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1. Introduction

The overall objectives of this research work are to formulate
and validate efficient parallel algorithms, and to efficiently
design/implement computer software for solving large-scale
acoustic problems, arised from the unified frameworks of the

finite element procedures.

The adopted parallel Finite Element (FE) Domain Decomposition (DD)
procedures should fully take advantages of multiple processing
capabilities offered by most modern high performance computing
platforms for efficient parallel computation. To achieve this

objective, the formulation needs to integrate efficient sparse

(and dense) assembly techniques (see Section 2), hybrid (or mixed)
direct and iterative equation solvers (see Section 3), proper
pre_conditioned strategies, unrolling strategies [Ref. 6.5, Chapter 10],

and effective processors' communicating schemes (see Section 3).

Finally, the numerical performance of the developed parallel

finite element procedures will be evaluated by solving series of
structural, and acoustic (symmetrical and un_symmetrical) problems
(in different computing platforms). Comparisons with existing
“commercialized" [Ref. 6.10] and/or "public domain" [Ref. 6.11]

software are also included, whenever possible.




2. Algorithms and Application of Sparse Matrix Assembly and
Equation Solvers for Aeroacoustics [Ref. 6.1]

(Please refer to the attached Journal Paper for this section)
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M * = number of nonzero coefficients in a sparse
‘ matrix. N + N1

ME = maximum number of elements connected
to a degree of freedom

{MM} = array of element numbers connected 10 2
degree of freedom

{MP} = array containing the number of elements
connected to a degree of freedom

{MS) = master degree-of-freedom array

MZ = maximum number of nonzero coefficients
per row

N = number of unknowns in the finite element
discretization

NE.NP = number of finite elements and degrees of
freedom per element

NF = number of fill ins during factorization of a
matrix

NX.NY.NZ = total number of transverse. spanwise, and
axial nodes

N = number of nonzero. off-diagonal
coefficients before factorization

N2 = number of nonzero. off-diagonal
coefficients after factorization

P = acoustic pressure tield

Poce D = acoustic pressure at local node 7 and
source pressure

Relerr. u. = relative error norm and uniform flow speed

Sy = surtace and volume of J finite element

X = nonzero value that was modined during
matnix fuctorization

VoL s Cartestan coordinates

Vil Vil Za = transverse, spanwise. and axial locations
of grid hines

Bewe = dimensionless exit admittance

ap;in = derivauve of the acoustic pressure
normal to a surface

< Cennt = dimensionless wall and exit impedance

(] = global vector of unknowns

{d . (e’ %') = local vectors of unknowns

{®pp. [Pyl = intermediate vectors for forward and
backward substitution

G F = vector components

ANEAE = gradient vector and Laplace operator

. = vector dot product

Sunscriprs

exil. § = exit and source plane index

F.R = factored and reordered matrix

FF.BB = forward and backward subsutution

1.J = row and column index of a matnx

Supcrscripts

truss element number

grid line locator for three-dimensional duct
matrix or vector transpose

complex conjugate

e

1.J.K

1]

I. Introduction

HREE-DIMENSIONAL aeroacoustics codes that can accu-

rately predict the noise radiated from commercial aircraft are
needed.’ Currently. noise prediction codes require the use of a linear
equation solver before radiated noise can be predicted. An optimizer
must then run the noise predictive code on a digital computer hun-
dreds of times 1o achieve an aircraft design with a mmimal noise
radiation signature.

Currently. industrv and government aircraft noise predictive
codes are either two-dimensional or treat only axisvmmetric noise
signatures. When the volumes are three-dimensional. the currently
used equation solvers require an excessive amount of CPU time
and RAM for their assemblv and soiution. This excessive CPU time
and computer storage restricts aircrafi noise prediction codes to

low-frequency sound sources in two-dimensional or axisymmeyr; -
environments.

Sparse equation solving technologies*™** have been devejope,
and are well documented for several engineering applications, .y, :
the computational advantage of sparse solver technology ove- .-
more conventional technologies (such as band or skyline so; -
has been demonstrated. In addition. for practical engineering ur-
cations. system matrix equations must be developed for an unyyr .
tured grid to which boundary conditions are often difficult to app..
The rinite element method is the simplest for generating the s\ srery:
matrix on an unstructured grid. ’

Only recently have sparse solver technologies been applied 10
aeroacoustics.'* In Ref. 1. several direct and iterative equanon
solvers were evaluated to determine their applicability 1o .
dimensional duct aeroacoustics computations with the direct spur.
solver emerging as the most promising. In Ref. 15, sparse «- -
equation solving methodology was extended 10 three-dimens:.
acoustically lined ducts. However. the work presented in Re: =
adopied the assembiy strategy that is currently available in the ;-
erature for assembling system sparse matrix equations. This simpic
bui inefficient assembiy sirategy preciudes the use of sparse soivers
for three-dimensional aeroacoustic computations. '

Most. if not all. major codes for analysis and optimal design ul-
low users to select either 1terative or direct equation solvers. For
nacelle seroacoustics compurations. iterative solvers are not as ro-
bust as direct solvers because the nacelle equation system is poorh
conditioned.' lterative solution methods. when appliedtosystem- -
poorly conditioned equations. have the disadvantage that they do.
converge. or they converge very sfowly. A further disadvantagzs .
applving iterative solution methods to solve the nacelle equation v ~-
tem is that the nacelle equation svstem often contains multipie right-
hand sides. lterative methods are not as efficient as direct methods on
equation systems with muitiple right-hand sides because the equa-
tion system rust be reformed and resolved for each right-hand side.

The long-term objective of this research is to acquire the capabil-
ity to design quiet aircraft in a fully three-dimensional aeroacousuc
environment using direct sparse solver technologies and the naite
element methodogy. The current paper has two objectives. The -
objective is to bridge the gap between the aeroacousticians v
may not have a comprehensive knowledge of sparse assembly und
equation solver technologtes) and members of the sparse researen
community {who mayv not have comprehensive knowledge of fi-
nite element analvsis and zeroacoustics ). The second objecine i~ o
present efficient algorithms for assembling sparse matrix equations.

Section II describes three sparse assembly algorithms for gener-
ating systems of sparse linear equations. Section I1I describes the
template that is used to develop a complete. unstructured grid. fi-
nite element code. that is. equation reordering. symbolic/numer:cal
factorization. supemodes/loop unrolling. and forward/backwarz - -
lution phases. Section IV presents a detailed formulation of the <
ement stiffness matrices that will be assembled using the sparse u~-
sembly algorithms to form the system matrix for a three-dimensional
duct aeroacoustics application. Finally. Sec. V discusses the zceu-
racv and numerical performance of the developed algorithms over
the frequency range of interest for a three-dimensional aeroacoustics
application. Note that although the sparse algorithms presented 2s-
sume that the system matix equation is symmetric, these algorinms
are easily extendible to nonsymmerric systems of equations. The
algorithms can also be conveniently incorporated into a substruc-
turing (or domain decomposition) formuiation to take advaniag?
paralle! computation to further reduce CPU time and RAM.

II. Sparse Assembly Algorithms
for Symmetric Systems

Figure 1 is a two-dimensional truss (or rod) structure assembled
from individual truss elements labeled (1). (2),..., (13) that are
interconnected at eight nodes labeled 1,2, . .., 8. An element () of
the structure is assumed to possess only two points of connection.
and the external loads are assumed to be applied at the nodes of the
truss elements. Only a single degree of freedom (DOF) at each node
is assumed. To further simplifv discussions. it is assumed that. by 2
separate calculation. the element stiffness matrix and external load
vector for the truss element (¢) are known and expressed as
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Under the assumption of Eq. (1), the 13 truss elements (Fig. 1)
may be assembled using the rules of finite element assembly'® to
obtain the system matrix equation
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Although onlv 4 single DOF &,y 15 assumed at node /. the dis-
~ussion to follow is easily extended to ¢ DOF per node by extending
i coefficients in [A]. that 1s, 4}/ .10 q x g submatrices. The rules

- matrix algebra would then pe applied to each ¢ x ¢ submatrix as

- were a scalar.

\- Sparse Data Formats for the Svstem Matrix
For the sake of brevi iy, 1 the discussions to tollow it will be
“»Umed that the element stiffness matrix is symmetnc so that

607
1 2 - 3
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Fig.1 Two-dimensional truss sampie probiem.

(4L, =[4"], (6)

Under the assumptions of Eq. (6), the system matrix [A] is also
sviunetric and can be written in the form

[AN. V)]
(a4 A2 o A A% o Al o
AV An AY 0 A 0o o o
0 AT Aw 0 AR 4 oo oaw
AV 0 0 As AW 0 AT 0

1

Ass A:!: 0 0

0o o AP o0 0 ALY 0 A

The sparse descriptions of any svmmetric svstem matnix [ A] [see
Eq. 7)) is tully descnibed by the four one-dimensional vectors

(T4A))=i{4.2.3.2. 1. 1.0.0

(J4VD) =12.4.5.7.3.5.5.6.8.5.7.6.8)7 (8)

[ADIN)) = {411, Axa. Az, Aag, Ass. Age. A= A’ (9)

('H

ANV D)= AR Al AR Al Al Al Al

TR any T .
.-\'IX:' .All:’). 4‘6). 4‘ .4 m\. A,':“} (10)

B. Application of Boundary Conditions

In most engineering applications. the field variable ar several
boundan nodes may require constraints to satisfyv a Dirichlet bound-
arv condition of the form

{®); =4, (ih

where J; 1s the specified value of the field variable ar node /.
Dinculer boundary conditions may be applied at the zlement or
svstem level. The impact of applving Dirichlet boundzary conditions
on the system matrix equation is identical whether appiied at the
element or system level. We will show the relativeiv 2asv process
of applving Dirichlet boundary conditions at the element levet and
their impact on the system matrix equation {Eq. (2)].

The process for inserting the Dirichlet boundary condition.
{®}; =d,. 15 as follows:

1y The coiumn of {A'”’] corresponding 1o the /th DOF is multi-
plied by d;. and the result is subtracted from {F'*'}.



2) The column corresponding to the /th DOF in [A''] is made
ZET0. .
3) The.row corresponding to the /th DOF in [A*'] is made zero.
4) The modified eiement matrix and the modified elemen: load
vector are assembled.
53 [ A}y 1s made equal to unity. and {F}, is made equal to ;.
Thus. applying Dirichlet boundary conditions 1o the system ma-
wrix equation modifies Eq. (2) to

[Al®) = (F) (N

The numerical values of the coefficients in the modified sysiem
matrix | A} remain unchanged from those in [A]. except for a few
that are made zero during the application of the Dirichlet boundary
conditions. Therefore. we will illustrate application of the assembly
algorithms to the nonzero pattern of [A].

C. Sparse Assembly Algorithms

Three symmetric sparse assembly algorithms will be explained
in this section. The purpose of each assembly aigorithm is to gen-
erate the system loads vector { £} and the four vectors denned by
Egs. (8-10). which correspond to [A]. The assembly algonthms
are discussed starting with the simplest and proceeding to the most
complex.

Afvornhm 1
The main ideas of this algorithm can be summunized by the fol-
lowing computational tasks:
1y Find how many and which elements are connected to cach
DOF.
ar Input data for N ..NE. NP and the elements connectivity ivee
Fig. 1
b Compute the number of elements associated with each DOF,
and store this information into the one-dimensional integer vector
TP\
<1 Find the element numbers associsted with each DOF. und
store this information mto the two-dimensional integer matnx
AN ME)].
21 Retrieve the stiffness matrix attached to each DOF. perform
Aparse matria essembly one row at a time. and extract the four one-
dimensional veetors required for the sparse equation solver.

Vivoruhm 2
The nonzero patterns of the svmmetrical matnis | 4] [see Eg. 7))
tor the two-dimensional truss example problem (Fig. 1) can be com-
pletely desernibed by the two one-dimensional integer vectors

RO =171 L4 4 1 L2 L5 42,3, 2,356,355 ;\.GIT
(13

HCOM = 1{7.7.1.7.4.4.2.2,5.5.5.3.3.5.5.6.6.6.8.5.8)
114
and the following integer matrix:
(2 3 6 7 9]
g 12 14 0 0
13 15 18 19 0
: ‘ 4 5 11 0 0 R
[HAN MZ) ] = 1016 0 0 0 (15)
17 2t 0 0 O
1 0 0 06 0
120 0 0 0 0]

The two one-dimensional integer vectors in Egs. (13} and (14) are
constructed by cycling through each element (e) in increasing order
and then determining the row and column index of each nonzero
coefficient from the connectivity array for each element (Fig. 1).
Note that the matrix [HA] contains locations (or pointers) that are
used to refer to vectors {/R} and {JC). For example. the values
of [HAly, =4. [HA):» =35. and [HA)s; = 11 indicate that row 4 of 6

matrix {A] will have these nonzero terms. The exact locations (row,
and column numbers: of those three nonzero terms in [A] can be
referred to as

€64

{R); = 4. JC)y = 1. {R}s =4

YCls = 4. IR}y =4 WCln=5 q-
Thus. the three nonzero terms of the fourth row of [ A] are located 4
row 4. column 7: row <, column +: and row 4. column 3. respectively
[see Eq. (T)). ’

The integer matrix [HA] and svstem matrix {A] can be altemna.
tively stored as one-cimensional vectors:

fhatM)) = {2.3.6.7.9.8. 12. 14. 13. 15, 18. 19,

4.5.11.10.16. i7.21. 1. 20)7 (17
fa(A) = {AN. AL An Al A Al AT AR A Al
Ao AL AR AN AL AR A AR A A A=)

(1R

The main ideas of algorithm 2 can be summarized by the following
computational tasks:

1) After imtializing {ha to a zero vector. process all elements (in
ascending order) to obuain the integer vectors {/R} and {JC} while
assembling [ A} into (a4},

2y Separate the dizzonal and nonzero off-diagonal terms of |47
from {«} and store this information in {AD} and {AN}). Separate -
diagonal and off-diazonal terms in {/R} and {JC). and compute {JA
and [/A].

3. Algoruim 3

The nonzero paitems of the svmmetrical svstem marrix [ A] can
be completely descriped by {J4) and the following one-dimensional
micger vector:

HON =1 =1{1.5.7.10. 12,13 141418 (19
where
HAY = {ICY, - - {ICY, 120
and the vanable V1 cun be conveniently computed as
N1 ={IC}s - = {IC}h (20
The element conractivity information for the two-dimensional

truss sample problem (Fig. 1) 1s fullv described by the ciement-
DOF matnix

[1 0 0 0 0 0 1 0]
00010010
10010000
11000000
10001000
00011000
[ECNEENY=10 1100 00 0 (22
01 001000
00101000
00001100
00100100
00100001
(00000 1 0 1]

Each row of [ E ] contains exactly two nonzeros because each element
has two points of connection. or nodes. to the structure. Thus, [E i is
nonzero only if node J is a node for eilement /. For example, the first
row of [E] contains a unit value only in columns 1 and 7. indicating
that the first element of the truss is connected to nodes 1 and 7 only

— D TN i aan
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(r1g. 1). 1B€ concept of an eiement-LUUr matnix 1s easily exiended
to ¢ DOF per node by extending each of the unity coefficients in
{E]to a g x g identity matrix.

- To minimize the RAM, it is convenient to describe the element-
DOF matrix [ E] by the iwo one-dimensional vectors

{IE(NE+1)} = {1.3,5,7.9. 11,13, 15,17, 19,21, 23,25. 27}/
(23)
[JE(NE x NP)} = {7.1.7.4.4.1,1.2. 1.5,

4.5.2.3.5.2.5.3.5.6.6.3.3.8.6,8)7 (2H

and the transpose of the element-DOF matnix ([E]") by the follow-
ing two one-dimensional vectors:

UET(N + 1)} = {1.5.8.12.15.20.23,25.27}" 125)

(JET(NE x NP\ = {1.3.1.5.4.7.8

7,9 1112.2.3.

.

6.5.6,8.9.10.10. 11. 13, 1.2.12. 13})7 (26)

The main ideas of algorithm 3 can be summarized by the following
computational tasks:
1) Assume that {/E). JE|, {{ET}, and {JET} have aireadv been
detined from the connectivity information (see Fig. 1).
a} Compute {IC} and {JA} (symbolic assembly phase .
b) Compute {/A} from Eq. (20).
2) Assume that vectors (JA} and {JA} have already been defined
from the symbolic assembly (task 1). Compute {AN} and {AD} from
{A''] tnumerical assembly phase).

II1. Sparse Algorithms for Solving
Symmetrical Equations

In this section. the major tasks involved in solving sparse svs-
wems of linear equations are briefly explained. The success of the
sparse solver i1s due to improved technologies ti.e.. equation re-
ordering. matrix decomposition. supernodes and loop unrolling. for-
ward/backward solution phases) and bookkeeping strategies ideal
for implementation on a digital computer. More detailed information
on improved technologies can be obtained from Rets. 2-14.

A.  Sparse Reordering Algorithms

After imposing the boundary conditions. the modified stiffness
watrix [ A} can be obtained from | A} as indicated in the discussions
“etore Eq. ¢12). Equation (123 should never be solved directly. To
rurther simplify the discussions. we will assume that matrix { A} has
the following numerncai values:

10 7 4 0 5 3]
7 12 0 2 0 0
[AN. )] = 10 660 00 el
0 2 0 11 1 o0
5 0 0 1 8 0
|3 0 0 0

Thus. inthis case N = 6 and V'1 = 6. During the factorization phase.
many of the zero-value terms appearing in Eq. 127) may become
nonzero. For maximum efficiency of storage and solution time. the
equations are reordered so that the number of nonzero terms that
occur during factorization are minimized. These extra nonzero terms
created during the factorization of [ A} are referred to as fill ins and
are denoted by the symbols F in the following equation:

— -

X X X 0 X X

X F X F F

- X F F F
[AF(N. V)] = X x F (28)

X F

X

in kg. (2¥), one has exght extra (or new) nonzero nili ins. As aresuil,
-

NF =8 60Z (29)

N2=N1+NF=6+8=14 30)

In general. the number of nonzero coefficients in the upper triangular
part of [ A] after factorization (N 2) is much larger than those before
factorization (N 1). .

The purpose of reordering algorithms [multiple minimum degrees
(MMID), nested dissection. or METIS aigorithms] is to rearrange
the nonzero terms of [A]. defined in Eq. (27). to different locations
so that N2 is minimized.”'"~= For example. applying the MMD
reordering algorithm to [A] will result in the following permutation
and inverse permutation vectors:

{PIN)} =1{5.6.3.1.4.2)7. {IVIN)) =14.6.3.5.1.2)

B B

(g N ]
With the permutation array {/P}. the matrix {A] in Eq. (271 can be
transtormed into .

— -~

M 0 0 1 0 2
0 & &6 0 3 0
- 0 0 66 0 4 0
[AR(N. V)] = I 0 0 88 5 0 (32)
0 3 4 5 110 7
_: 0 0 0 7 IIZ_J

Now. if one factorizes {Ax]. there will be onlyv one fill in that
occurs. as follows:

Y 0 0 X 0 X7
X 00 X 0

TARFIN. NV = X 0 x 0 (33
X Y F
X X
L X

B. Sparse Symbolic Factorization
The reordered matnx [ Az | can be described by the following four
one-dimensional vectors:

AN = 1) =1{1.3. 4. 1

h

.67,

~14
~1

AN ] = (4.6, 5.

wn

5.6} (34
[AD(N)Y = {11.43.66.88.110. 112)7

ANV D = {1.2.3.4.5.7) (3

n

'

In this example. NV =6 and V1 = 6. Before performing the numer-
ical factorization. it is necessary to go through the sparse symbolic
factorization. so that the foliowing hold true:

1) The nonzero pattern of {Agg] can be determined (including
the {ocations of fill ins).

2) The value of N2 can be determined so that adeguate com-
puter memory can be allocated tor the subsequent sparse numerical
factorization phase.

On completion of the sparse svmbolic factorization phase. the
nonzero patterns of [ Agr] are completely known. and the moditied
versions of Egs. (34) and (33 for the factored marrix {Agpjcan be
computed as

AN + 1)) =({1.3.4.5.7.8.8)7
AN} =14.6.5.5.5.6.6)7 (36
In this case.
N2=N1=-ANF=6+1=7 (37)

Efficient sparse svmbolic factorization algorithms and detailed
FORTRAN coding can be round elsewhere -~



.

C. Finding Supernodes

To understand the concept of a supernode (or master node). notice
that, in Eq. (33). rows 2-3 and 4-5 have the same nonzero patterns.
That is. the nonzero terms in rows 2-3 correspond to the same
column numbers. Equation (33) can be used to define a master DOF
vector

{MS(N)} = {1.2.0.2.0. 1) (38)

The master DOF vector {MS} is based on the assumed system matrix
{Arr]defined in Eq. (33). Once Eq. (38 has been defined. effective
loop-unrolling techniques™*3 can be used to improve computational
speed during the sparse numerical factorization phase.

D. Sparse Numerical Factorization Phase

The strategies emploved in this phase are quite similar to the ones
used during the sparse svmbolic factonzation phase and have been
well documented in the literature.>** The reordered system matrix
{Ag] can be decomposed or factorized as

[Ag] = [LUD LY (39

Here. | D] is a diagonal and [£] is unit iower triangular matrix. and

Azl (=0
D=1 o
T - YDl =238
A =1
(300
LIy =
[Arly (=1 J=2... . N)
1Dy
[ -
. Dl Llxil Llks
Agly = Y DA KNSIKS Gy gy =gl V)
TAg g Dl [=1 I+1
+h

E. Solution to the System Matrix Equation

The solution to the svstem matrix ecuation [Eg. (12)] is obtained
in three phases:

1) In the nrst phase (forward solution phase). an intermediate
solution vector {®gr} is computed from the solution of the matnx
equation

[L){®rr) = | Fp) (42)

2) In the second phase (backward sciution phase}. a vector {$gg}
is computed from the matrix equation

[DILY {®ps) = | rr} (43)

3)Inthe third phase (back transformasion phase). the vector {®gg}
1s transformed back 1o the original unknown vector {®} by urilizing
the inverse permutation vector {/V}.

IV. Three-Dimensional Aeroacoustics Application

The developed algorithm will be exercised 10 studv the propa-
gation of acoustic pressure waves in a three-dimenstonal duct hined
with sound absorbing materials (acoustic linerss as depicted inFig. 2.
The duct is spanned by axial coordinaie -. transverse coordinate x,
and spanwise coordinate v. The source plane is located at - = 0. and
the source plane acoustic pressure p, is assumed known. At the exit
plane. the dimensionless exit acoustic impedance ley, is assumed
known. In the duct. air is flowing-along the positive - axis at 2 sub-
sonic speed of u,. and the duct has acoustic liners along its upper,
lower. and two sidewalls. The duct walls are assumed to be locally
reacting so that the sound absorbing properties of the acoustic liners
results from the dimensionless wall impedance { that is assumed
known. The sound source pressure. dimensionless exit impedance,
and dimensionless wall impedance are assumed functions of posi-
tion along their respective boundaries.
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Fig. 2 Three-dimensional duct and coordinate system

A. Mathematical Formulation

The mathematical formulation of the duct acoustics problem
(Fig. 2) does not lead to a boundary value problem that is for-
mally self-adjoint and will not lead to u symmetric svstem ma-
trix when airflow is considered. Thus. the analysis in the foregoing
discussion does not allow for airfiow because the current paper fo-
cuses on symmetric svstems. With zero airflow in the duct (1, = 0.
the mathematical problem is to nnd the solution 1o Helmholiz'~
equation'

Vip+ip=0 +h
Along the source plane of the duct (- = 0). the boundary condition
is given in term of a Dirichlet boundarv condition:
p=nr (45
The wall boundary condition is
a
—p = —ik E (361
dn I

At1he duct iermination (2 = L), the ratio of acoustic pressure to the
axial component of acoustic particie velocity is proportional to the
known dimensionless exit impedancz. When expressed in terms of
the acoustic pressure. this boundany condition is

a_p = —ik r

= “h
an Cexn

Equations (44—47) form a well-posed boundary value problem
for which exact solutions for the acoustic pressure field are gener-
allv not known. A solution for the acoustic pressure field satisfying
this boundary value problem is required to predict and reduce the
radiated noise. An approximate solution for the acoustic pressure
field can be obtained using numenical techniques such as the finite
element method.

B. Finite Element Model

The approximate solution for the sound field in the duct is ob-
tained by subdividing the duct and representing the acoustic fiel
within each subdivision by relativeiv simple functions. Because the
duct of interest is a rectangular prism. the computational domain is
divided into a number of smaller rectangular prisms (or elements)
as shown in Fig. 3. These elements are considered interconnected at
joints called nodes. The most widely used method for locating the
nodes in the discretization is to divide the physical volume into NX.
NY. and NZ grid lines in the x. y. and - directions. respectively. as
shown in Fig. 3. Each node of an element can be located by iden-
tifving an ordered triplet. (x;, y;. -x). Similarly, each element in
the assemblage can be identified bv an ordered triplet of integers
(I, J. K). A rwypical rectangular prism element (/, J, K) is shown
in Fig. 4. Each element consists of eight local node numbers labeled
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Fig. 4 Typical three-dimensional element and local node numbering
svstem.

[ 8. Each element 18 considered 1o have a dimension of &,
iw.and / inthe 1. = and - directions. respectively, as shown.
C. Element Stiffness Matrix

Galerkin's tinite ziement method is used to compute the element
stitfness matrix. The neld error function is detined as

E =Vp+kp (48)

Within each element. p is represented as a linear combination of
21ght functions. N, Nso. ! %e

P=3Y Nup, 49)
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The linear combination {Eq. (49)] comprises a complete set of basis
functions. .

For atypical element (/, J. K'). contributions to the minimization
of the field error function due to local node m over the computational
volume V" are

f EN,dV = / (Vip + &k pIN, dV (51)
¥ 1%

The second derivative terms in Eq. (51) are reduced to first deriva-
tives using Green's second identity

2 0
f EN,dV = f [~(V1p - {9INn + K pN,] 4V / .y, as
i v . 5 dn
(52)

Elimination of the second derivative terms from the volume inte-
gral in Eq. (31) is required so that the linear basis functions N,,
can be used. Elimination of the second derivative terms from the
volume integral also has the advantage that all impedance boundary
conditions can be incorporated into the surface integral of Eq. (52).
This allows a choice of basis functions that do not have to satisfy
explicitly any impedance boundary conditions. The contribution to

the surtace integral
.. .
/f—:\n dd (53)
g un

is idenucaily zero for all elements except those that lie along
an impedance boundary. Substuituting the exit boundary condition
1

{Eqy. 1474} into the surtace integral in Eq. (23) gives
a3
PN, dS = —ik | LN, ds (54)
S an s Lexn

along the exit boundary. whereas for elements that lie ulong the
upper. lower. and sidewalls of the duct

\ ,
LN, dS = —ik [ Ly, ds (551
5

< an Iy

The contribution to the mintmizaton of the feld error for cach
element. when collected for cach of the eight local nodes m. 1s
expressad in matrix form as

/ E, N dV
v

/E,N:d\’ ,
' ____[A-I,J K\]{@.I!,Kﬂ} (561

/ E. Ny dV
v

In Eg. 561, {9/ 7K'} is an 8 x | column vector for each element
containing the unknown acoustic pressures at the eight locai nodes
of the 2iement

[CD‘IJ‘K,}‘ = {pi. p2. P3. Ps. Ps. Po. P=. s} (37)
The element matrix [AY7%'] is an 8 x 8 complex symmetric
matrix for each element (/. J. K). In the special case of a hard wall
duct($ =,

- (Pl K=WwzZ-1
dIKY
[A ] ~ HP1+ (Bl K =(NZ - 1) (58)



Here. [P] represents the contribution to [ A~/ '] due 10 the element
volume V. whereas [ B] represents the contributions due to the exit
piane boundar.. The matrices [P} and | B} are symmetric. and their
coefficients have been computed explicitly:
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in which

Beww = 1/ e (65

V. Results and Discussion

The three-dimensional nigid wall acoustic element has been cou-
pled with the sparse assembly and equation solver algorithms to
provide assembly and solver statistics for a three-dimensional duct
aeroacoustics application. Computations presented in this paper
were run on a single processor with double-precision 164-bin arith-
metic on an ORIGIN 2000 computer plattorm. The sparse equation
solver used MMD reordering. Computations are presented for
unttorm grid and a geometry identical to that of the Langley Flow
Impedance Tube. This three-dimensional duct has a square cross
secton 00308 m in width (W = H =0.0508 my and 0.812 m in
length «L =0.812 m). A more detailed description of the duct is
given in Retf. 15, All calculations were performed ar standard at-
mospheric conditions without flow. und the source frequency was
chosen to span the tull range of frequencies currently of interest in
duct liner research. The sound was chosen as a plane wave (p, = I).
and the dimensionless exit impedance was chosen as unity (Zo = 1).
This exit impedance will simulate 2 nonreflecting termination for
the plane wave source.

Table | presents CPU statistics (in seconds) for each of the three
assembly algorithms and the sparse equation solver as a function of
the source frequency f. in kilohertz. The CPU time for the solver
tcolumn 9) 1s that required to obtain the solution vector after the sys-
tem matnix was assembled. Note that before obtaining the solution
vector. the system matrices obtained from each assembly algorithm
were compared to each other. Each assembly algorithm assembled
the identical system matrix as expected. Also included in Table 1 are
the number of grid lines NX.N'Y. and NZ and the matrix order N that
were used to perform the computations at each frequency. Here we
have used the generally accepted rule that 12 poinis per wavelength
is required 1o resolve a cut-on mode in each coordinate direction. To
establish the accuracy of the solver solutions. the relative error norm
{Relerr). computed from the solver solution vector. was tabulated in
the final coiumn of Table i. The relative error norm- is defined as

_{ENY x (EN)T

Relerr - —
{(F\* x {F)T

(66)

where

{EN} = [A}{®} — {F} (67)
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Algonthm ;  Algorithm 2 Algorithm 3 Sotver Relerr o & o
4.00 6 6 114 4104 4920 0.34 o 600 6.5x 10715
7.00 12 12 200 28800 106.80 250 175 2280 1.8x10~12
1100 18 18 313 101412 1,123.80 9.05 228 48780 75x 1078
1400 24 24 399 229324 5.520.60 20.74 14.24 3,12000 34xi0~!
1700 30 30 484 435600 19.488.00 39.78 26.94 1044000 3.2x 107"
2100 36 36 599 776304 N/A 73.81 48.35 N/A N/A

Table2 RAM siatistics (in megabytes) for the sparse algorithms

f N Ni Algonthm 2 Algorithm 2 Solver
1.00 4104 11.468 047 0.46 1.00
7.00 28.800 331.244 21.00 11.00 80.00
11.00 101412 1.216.118 72.00 37.00 640.00
1400  2290.824 2.812.838 165.00 83.00 2.130.00
17.00 435600  1.396.600 3i7.00 158.00 $.100.00
21.00 776304 9.696.158 $51.00 283.00 N/A

Tabular results at 21 kHz are not presented for assembly algorithm 1
and the sparse equation solver because of the excessive CPL time
required by these two algorithms.

Although algonthm | is extremely simple. its performance is
extremely slow (Tuble 1). Note that algorithm | is 145 times slower
than the other two uigorithms ar a frequency of 4 kHz und more
than 490 times slower at 17 kHz. Tabular results also show that the
CPU time required 10 assemble the system matrix using algorithm 1
exceeds that required to obtain the solution vector by Y048 s (or
87¢ ) at 17 kHz. At low frequencies. algorthm 2 is only slightly
slower than algonthm 3, but as the frequency increases 10 17 kHz,
algorithm 3 is 329 faster than algorithm 2. Generally. the higher
the frequency. the better the performance of algorithm 3. relauve 1o
that of algorithm 2. Furthermore. in using algorithm 2. the user has
to guess the maximum number of nonzero terms per row (MZ) 10
allocate the RAM tor the matrix [HA]. Also. the CPU times reyuired
to assemble the <y stem matrix using afgorithm 2 or algorithm 3 are
both more than two orders of magnitude less than the time required
10 obtain the solution vector. Finaily. Relerr s small, indicating that
the solver solution is accurate.

Table 2 shows the RAM (in megabytes) for algorithm 2. algo-
rithm 3. and the sparse equation solver. RAM statisucs for alzo-
rithm | were not tubufated because its performance was extremely
slow when compuared to algorithm 2 and algorithm 3 (as shown in
Table 1). Values of the variables N und V| are also given in Table 2.
The results show that the number of off-diagonal nonzero coeffi-
cients (M 1) 1s an order of magnitude larger than V. Table 2 also
shows that algorithm 3 requires less memory than algorithm 2 be-
cause algorithm 2 must allocate RAM for stoning vectors {/R). [JC).
and [HA] [see Egs. (13-15)]. Note also that memory required by the
sparse equation solver is substantially larger than that required for
assembly algorithm 2 or algorithm 3. This 1s turther veritication that
most of the RAM allocated is used duning matrix factorization. Pre-
liminary results from tests conducted by the authors have suggested
that the performance of the sparse equation solver may improve if
the solver were to use METIS instead of MMD reordering. For ex-
ample. at 7 kHz the number of nonzeros after factorization « V' 2} was
reduced from 4.736.991 with MMD reordering to only 4.376.496
when the METIS reordering algorithm was used.

V1. Conclusions

A template for symmetric sparse equation assembly and solutions
on an unstructured :nd has been presented. The accuracy and nu-
merical performance of the sparse algorithms have been evaluated
over the frequency range of interest in a three-dimensional aeroa-
coustics application. Based on the results of this study. the following
conclusions are drawn:

1) Assembly aigonthm 1 is impractical for system matrix assem-
bly at high values of source frequency. It requires up to 87 more
CPU time 10 assemble the system matrix than the sparse equation
solver requires to obtain the solution vector.

2) Assembly algorithms 2 and 3 have nearly equal performances
at low values of source frequency. but algorithm 3 gives savings
in both CPU time (32%) and RAM (50%) at the higher values of
source frequency.

3) Error norm statistics show that the sparse equation solver com-
putes accurate acoustic solutions over the frequency range of interest
for the three-dimensionai aeroacoustics application.

4) At high frequency (17 kHz 1. the sparse equation solver requires
low memory. but requires significant speed-up before optimization
studies (either of the duct geometry or liner material properties) are
practical. This research supports a recommendation. therefore. that
a parallel version of the sparse solver be developed. The CPU ume
and RAM required by assembly algorithms 2 and 3 are two orders of
magnitude smaller than that required by the sparse equation solver.
These algorithms can. therefore. be conveniently incorporated into
a substructuring (or domain decomposition) formulation (provided
that each substructure is handled by different processors) 1o take
advantage of parallel computation to further reduce CPU ume and
RAM.
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3. Parallel Finite Element Domain Decomposition for Structural/
Acoustic Analysis: Symmetrical Case [Ref. 6.2]

(Please refer to the attached Journal Paper for this section)

13



Jovrnal of Computational and Applied Mechanics. Vol. 4.. No. 2.. (2003;. pp. 189~201

PARALLEL FINITE ELEMENT DOMAIN DECOMPOSITION
FOR STRUCTURAL/ACOUSTIC ANALYSIS

Duc T. NGuYEN, SIRO! TUNGKAHOTARA
Department of Civil and Environmcntal Enginecring. 135 KAUT Hall
Old Dominion University, Norfolk, VA 23529, USA
dnguyen€odu.edu, toohtaahfyahoo.com

WiLLIE R. WATSON
Computational Modelling & Simulation Branch. MS 128
NASA Langiey Research Center, Hampton. VA 23681. USA
v.r.watsonllarc.nasa.gov

SuBraMaNIAM D. RaJAN
Civil Engineering Department. ECG 252
Arizona State University. Tempe. AZ 853287, USA
s.rajanfasu.edu

[Received: July 24, 2002)

Abstract. A domain decomposition (DD) formulation for solving sparse lincar systems of
equations resulting from finite element analvsis is presented. The formulation incorporates
mixed direct and iterative equation solving stratcgics and other novel algorithmic ideas that
are optimized to take advantage of sparsity and exploit modern computer architecture. such
as memory and parallel computing. The most timc consuming part of the formulation is
identified and the critical roles of direct sparsc and itcrative solvers within the framework
of the formulation are discussed. Expcriments on several computer platforms using real
and complex test matrices are conducted using softwarc based on the formulation. Small-
scale structural examples are used to validate the steps in the formulation and large-scale
{1,000,000+ unknowns) duct acoustic examples arc used to cvaluatc the parallel periormance
of the formulation. Results are presented using 64 SUN 10000. 8 SGI ORIGIN 2000 proces-
sors, and a cluster of 6 PCs (running under the Windows cnvironment . Statistics show that
the formulation is efficient in both sequential and parallel computing cnvironimcents and that
the formulation is significantly faster and consumes less memory than that based on once of
the best available commercialized parallel sparse solvers.

Mathematical Subject Classification: 74505.15A06.
Keywords: linear algcbra, sparse matrix computation. parallcl computation. finite clement,
domain decomposition, structures. acoustics

1. Domain decomposition (DD) formulation for finite element analyses

Application of finite element analvsis to engineering problems leads to the discrete
equation system [1. 2] '

[K}{Z} = {S}. {1.1)
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where 5,7 are vectors of length N that contains the known :ncdal loads and un-
known nodal quantities, respectively. Here K is a complex. nensingular. svmmet-
ric/unsymmetric, NxN sparse matrix. Although (1.1) assumes = single loading con-
dition (i.e., right hand side), multiple loading conditions may be treated by taking S
and Z as dense matrices, so that the j** column of Z corresponds 10 the N unknown
nodal quantities associated with the loadings in the j* column ¢ 5.

Using the domain decomposition concept, (1.1) is written iz partitioned form

{ Kps K1 Zp }={ Sp } (1.2)
{ Kis Ku j\ Zi Si '
where submatrices K;g.Kp;, K1y and Kgp have dimension mxn. nxm. mxm and

nxn, respectively. The interior and boundary unknowns (i.e.. Z: and Zg) have di-
mensions compatible with the colummns in K; and Kpgpg. respeciively.

Eliminating the interior unknowns from {1.2) gives

KpZg=Fp, (1.3)
where
Kp=Kpg+ Kp1Q, 1.4)
Q=-K;/'Kis, (1 5)
Fe=Ss+Q, (1.6)
Q=-Kgi5r, (1.7)
S = ’—151 (1.8)

Here K'p is the boundary stiffiness matrix for the domain. Fg is 1 vector of boundary
forces. and the superscript (i.e., —1) denotes the matrix inverse. Efficient sparse
algorithm (3]-{11] may be used to decompose sparse matrix A;: and solve for matrix
Q in (1.5) and the vector 5; in (1.8).

In the current DD formulation {12, 13] the computational do:ain is decomposed
into L subdomains and Kp and Fp are svnthesized bv cousicsring contributions
from all subdomains. For this purpose, the discrete equation svsien:
(which is considered an isolated free-body) is expressed in the o 1.2}

r T r) r)
Koy kg | [z \_[ 55 , r=123L (1.9)
AT A |

where r refers to the rt* subdomain. Let n{”) and m‘ represen: the number of
boundary and intesior unknowns of the r** subdomain. respect:veiy. The solution
of (1.9) is

k§z0 = FY, (1.10)
z0 = (k) 1SV - kDzE) (1.11)
where
kS =k + K57, (1.12)
Q" = ~(K[P) K] (1.13)
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F =50 400, (1.14)
- QW = -K5)87, (1.13)
57 = &Sy (1.16)

Finally, Kp and Fjz may be obtained explicitly from the equations

L L
Kp=) (B"TKSBV, Fs=5p+Y (A"7@Q™MTs, (1)
r=1 r=1

where (") is a Boolean transformation matrix of dimension n{"*xn(".

The sequence of steps constituting the DD formulation proposed in this paper is
as follows:

(1) Decompose the large-scale finite element domain into L smaller subdomains.

Algorithms and software given in {12. 13] are used for this purpose.
~ (2) Compute K{p), K5}, k{7, KS). 5. and 5§ using efficient sparse assembly
algorithms {3, 11].

{3) Factorize the sparse matrix K}? and compute 5\ using (1.16) and Q"
using (1.13). Algorithms and software for sparse svmbolic and numerical
factorization, loop unrolling technigues. equation reordering. and forward-
backward solution phases ([3]-{11'} are utilized at this step.

(4) Compute Kg) and F, g) for each subdomain.

(3) Compute Kg and Fg from (1.17).

{(6) Solve (1.3) using a direct or iterative solver to obtain the boundary unknowns,
Zg.

a): Efficient parallel direct dense solvers given in [14-[16] mayv be utilized
at this step provided that A'p is formed explicitly.

b): However, explicit computation of K g is an expensive operation due to
the need to perform the inner produce K g} Q" in (1.12).

c): Iterative solvers (such as the preconditioned conjugate gradient algo-
rithm) [17] are therefore recommended for this step in the formulation.
The use of an iterative solver eliminates the need 10 form Kp explicitly
because each stage of the irerative solution typically requires only the
product a matrix (Kgg + K(Br,' )@ with a known vector.

(7) Finally, the solution for the interior unknowns are obrained from (1.11) by
using the factorized sparse matrix I’;;‘ during the forward and backward
substitution phases.

The solution vectors obtained from the formulation are post-processed to obtain other
quantities of interest such as stresses. strains. acoustic energy. etc. The remaining sec-
tions of this paper will focus on issues related to efficient sparse assembly procedures.

e
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2. Simple finite element model

To facilitate the discussion a simple finite element model which consists of 4 rectan-
gular elements with 1 degree of freedom (dof) per node and its loading condition

=-40*
R5=42.‘ Ri'——f' R, :4?
T 15 3 P
3
(3) ::i} :
- R,=10 f
RZ = 44k = R{ = 250&
ik 3 i 8 .
(3\3 . :l:.' ’
-~ v - :
R,=-20* j R =48

“recrangular
e}ement in Figure 1 are ngen by the following “element-dof” connectivity matrix. E

1 23 45 6 7 ¢& 9
x

[z Jzi | 1z (xi |1
|[E]= zlxiz| iz| | |2 (2.1)

Tzl jzlzx b 3

z | jrixjizid

The number of rows and columns in E correspond to the total number of Znite ele-
ments (4 finite elements) and degrees of freedom (9 dof }. in the model. Tie oliowing
2 integer arrays describe the nonzero structure of F iz a row oriented format

{IE}T ={1.5.9.13.17} . (2.2)

{JE}T ={3,8.1,6.7.3.2,4,5.2.3.6.7.9.5.3} . (2.3)

The array IE contains the starting location of the first nonzero rerms for each row of
matrix E while JE contains the global dof number associated with each e'” .=1.2.3.4)
rectangular element. This format is called compress row format. Similariy. he trans-
pose of the martrix E can be described by two integer arravs. JET and JET.

The “exact” numerical values for the 4x4 element stiffness matrix K¢ is “unim-
portant”™ at this stage of the discussions and are assumed to be given by the foliowing
formulas:
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3 8 1 6 7 3 2 4
_ 2] 3] 4]5]3 ] 6] Bl10]7
(KM =37 4] 5/6|8 [K®)=]=6] 8] 10112]|3 (2.4)
—4]-5] 6]7]1 8 -10| 12]11]2
~5]<6|-7]8|6 10 12 | —14 | 16 | 4
5 2 3 6 7 9 8 3
6] O] 12]15]5 8] 12] 167207
K® =9 12| 15|18|2 [KW]=—12 16| 20]24|9 (2.5)
12| -15] 1819113 16 —20; 24,258
—15 | 1B | —21 |24 |6 20, —24 1 -25 3213

Note that the global row and column numbers for the " rectangular element are
easily obtained from JE. For example. the global row and column numbers 7.3.2,
and 4 for rectangular element 2. are contained in the 5.6.7. and R*" element of JE.
Further, the “simulated” element stiffness matrices. X ¢, are unsvmmetrical in value
but symmetrical in locations. For example. K{? has a nonzero term of 14 at location
(3, 4), and there is also a nonzero term of -14 at location (4.3). Following the u>ual
&&%W J.uu\u asncy mnmt:: ﬂ.fxl nmmnm*: far rheo #

A i e . e el P . IS

[K}{Z} = {5},
where .
[K}= z (K] (2.7)
=1

For example, K33 = K{}) + K{3) + K ‘3) + K{) =248+ 18 + 32 = 60 as indicated
in (2.8)

1 2 3 4 5 6 7 8 9
7

[ —4 ! P P 1
i 24] 5[14; -9118] -8 i 2
4] —5| 60112 —12'26:.-26:-25 -2413
_ —141-12716; Fi{ F:—-101 F, F 4 ) e
K= ——T T 6 3T F_ F| _F 5 2.8)
—7]-18, 26| .—-15,32{ F; -61 F |6
8] 26110] T 121 16] 12|7
5 25] | T 61-161 28,208
[ [ 24] | I 1-12; 20: 169
{5}7 = {4.44,10. —20.42, —40.84.28.48} , 12.9)

where F represents fill-in terms (shown in the upper triangular portion of matrix i
only) that occur during factorization of K.

18




194 D. T. Nguyen, W. R. Watson, S. Tungkahotara and S. D. Rajan

The solution to equation (2.6) is:
{Z}7={1,1,1,1,1.1.1.1. 1} (2.10)

which has been independently confirmed by the results of the computer program
developed. In the upper triangular portion of K. there are 9 fill-in terms. In order to
minimize the number of fill-in terms during the svmbolic and numerical factorization
phases, reordering algorithms {10, 13] such as multiple minimum degree (MMD),
Nested-dissection (ND), and METIS are used in the DD formulation.

3. Symbolic sparse assembly for symmetrical and unsymmetrical matrices

It is useful to understand the symbolic sparse assembly for “svmmetrical” matrices
[3, 11] before proceeding to the unsymmetrical case. Figure 2 gives a “pseudo”

P=1

——s D030T=1 NMI = N— 1) for cach P row of [A]
=7
I F* row comespond to bug ) Ge o 30
=% Do 20 P = cousucher alt tlaneuts sitached to T rowv (o1 &) I 2050310 tvirD e;;:n‘zﬂ
Peogum§T By
7" De 10KP = consnker all podes (o dofy o ,‘:-‘Tf !n:y-mw
B et B e S s _wt;mt«uf;:‘i';“ Ao o ": '"i_ - -

7 R C RN 1
{Shp ascebime Lowes Tiansie of [4] e to SYM \:

Do NOT want to sicihude the dof winch aendy acoomted
Tig uvoms otlrer elenients) < 1A (K =1

\

\ *Record the cohun £F. (on the I row) windh hias
‘ monezao tam > JA(JP =K
|

|

“Increase the couter TP oY 1 (tor Compmang NCCEF L
JP=1P+1
; ===t 10 Cotime

e 20 Contume

“: e B0 13b=JP

: NCOEF] = Jp
AN = Jp
AN+ H=IF

Figure 2. Pseudo Fortran codes for svmmetrical svmbolic sparse assembly

% Fortran coding of the symme:rical sparse assembly procedure. Only minor changes
‘ in this symmetrical assembly procedure are required to extend it to unsymmetrical
| matrices.
| In a symmetric matrix the “lower triangular”™ portion of I\ is identical with the
“upper triangular portion.” Thus, the upper triangular portion of A" (negiecting fill-in
terms {2.8)) can be represented in compressed row format by the following 2 integer
arrays:
(1A} = {1,4,9,15,16,17.18.20.21.21} . (3.1)
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{JA}T = {3,6.8,3.4.5,6,7.4,5,6,7,8.9.7.6.8.5.9.9} . (3.2)

where the array 1A contain the starting location of the first non-zero. ofi-diagonal
term for each row of the upper triangular portion of K. The difference between any 2
consecutive integers on the right-hand-side of (3.1) will give the number of non-zero
(off-diagonal) terms in a particular row of the upper triangular portion of K. For
example, IA(3)-1A(2) = 94 = 5. Hence, there are 5 non-zero terms (excluding the
diagonal)) in row 2 of the upper triangular portion of matrix K. Additionally, JA
contains the column numbers, associated with each non-zero. off-diagonal term for
each row of the upper triangular portion of matrix K. Note that /A and JA arrays
can also be obtained from the “pseudo™ Fortran coding shown in Figure 2.

The following minor changes in the coding of Figure 2 are required to perform
unsymmetrical assembly.

a): DO 30 I= 1, N (the last row will NOT be skipped)

b): Introduce a new integer array IAKEEP(N+1) which plavs the role of array
TA(-), for example: IAKEEP({I}= JPI.

c): Remove the IF statement in Figure 2 that skips the lower triangular portion.
As a consequence of this. the original array IA (-) will contain some additional,
unwanted terms.

~=d):"The output from ihe “unsymuneirical’ sparse assembly will be stored by

IAKEEP{-) and JA(-). instead of IA(-) and JA(-} as in the symmetrical case.

4. Applications

4.1. Software. The software that is based on the parallel DD formulation presented
in this paper has been developed. The parallel algorithm uses the message passing
interface (MPI) for interprocess communication and is therefore highly portable. The
software developed is referred to as the direct iterative parallel sparse solver (DIPSS).
DIPSS (in FORTRAN) incorporates a number of lower level routines and provides op-
tions for both real and complex matrices in double precision (i.e.. 64-bit arithmetic).
Results are presented for symmetric matrices only. We use sparse factorization tech-
niques presented in [3] and implement the preconditioned conjugate gradient iterative
solver [17] to solve the dense system (1.3). The following three examples are used to
evaluate the proposed paralle] DD formulation. Performance gains are particularly
evident for large problems.

4.2. Example 1- Mixed finite element types. Thisis a structural example for
which the equation svstem is real and svmmetric and has more than 1 finite element
type. The entire finite element model is shown in Figure 3 and consists of 2-node
“line” elements, 3-node “triangular” elements, and 4-node “rectangular’ elements.
Interior and boundaryv nodes are denoted by open and filled circles. respectively. This
small-scale, finite element mode! is decomposed into 3 subdomains as indicated in
Figure 4. The primary purpose of this example is to validate all intermediate and
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Figure 3. Finite element model with mixed elements
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Figure 4. Decomposition of mixed model into three subdomains

final numerical results using the DIPSS software. This small-scaie example was also
solved in Matlab using separate software packages. Although numerical results are

2|
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not presented for the sake of brevity, excellent comparison between DIPSS and the
Matlab solution was obtained for this small-scale example problem.

4.3. Example 2 — Three dimensional structural bracket finite element
model. The DD formulation has also been applied to solve the 3-D structural bracket
problem shown in Figure 5. The finite element model contains 194,925 degrees of
freedom (N=194,925) and the elements in the matrix, K. are real. Results were
computed on a cluster of 1-6 personal computers (PCs) running under the Windows
environment with Intel Pentium IV processors. It should be noted that the DIPSS
software was not ported to the PC cluster, but the DD formulation was programmed
(from scratch, in C**) on the cluster.

RVAVAN
3

P

‘3:.‘;%21»

Figure 5. Finite element model for a three-dimensional structural bracket

22




.

198 D. T. Nguyen, W. R. Watson, 5. Tungkahotara and S. D. Rajan

The wallclock time (in seconds) to solve this example is documented in Table 1. A
superlinear speedup factor of 10.35 has been achieved when 6 processors were used.

# of PC processors 1 2 3 41 5 6
Wallclock time (sec) | 2,670 | 700 | 435 | 405 306 | 258
Speedup factor 1.00 | 3.81 | 6.14 | 6.59 1 8.73 | 10.35

Table 1: 3-D Structural bracket model (194.925 dofs, K real)

4.3. Example 3 — Three dimensional acoustic finite element model. In this
final example, DIPSS is exercised to study the propagation of plane acoustic pressure
waves in a 3-D hard wall duct without end reflection and airflow.

Figure 6. Finite element model for a three-dimensional hard wall duct

The duct is shown in Figure 6 and is modelled with brick elements. The source
and exit planes are located at the left and right boundary. respectively. The ma-
trix, K, contains complex coefficients and the dimension of A" is determined by the
product of NN. AfAf, and QQ (N=MMxNNxQQ). Results are presented for two
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grids (N=751,513 and N=1.004,400) and the finite element analyvsis procedure for
generation of the complex stiffness matrix, K, was presented in another paper [18].

" - DIPSS memory and wallclock statistics were also compared to those obtained using
the platform specific SGI parallel sparse solver (i.e., ZPSLDLT). These statistics were
computed on an SGI ORIGIN 2000 computer platform that was located at the NASA
Langley Research Center. The SGI platform contained 10 gigabytes of memory and
eight ORIGIN 2000 processors were used. It should be noted that ZPSLDLT is part

of the SCSL library (version 1.4 or higher) and is considered 10 be one of the most
efficient commercialized direct sparse solvers that is capable of performing complex
arithmetic. Due to the 3-D nature of hard wall duct example problem, A encoun-
ters many fill-in elements during the factorization phase. Thus. onlv the small grid
(N=T751,513) could fit within the allocated memory on the ORIGIN 2000. ZPSLDLT
required 6.5 wallclock hours to obtain the solution on the small grid whereas DIPSS
waliclock was oniv 2.44 hours. DIPSS also required nearly 1 gizabvte less memory
than ZPSLDLT, and the DIPSS and ZPSLDLT solution vector {Z) were in excellent

.agreement.

Because DIPSS uses MPI for interprocess communications. it can be ported to
other computer platforms. To illustrate this point the DIPSS software was ported to
the SUN 10000 platform at Old Dominion Universitv and used to solve the large grid
duct acoustic problem (N =1.004.400). Wallclock statistics and speedup factors were
obtained using as many as 64 SUN 10000 processors. Results are presented in Table

2 It should be.noted-that-a superlinear speedup factor-of 55.85 has been achieved-—-——r - omen

# of SUN processors 1 2 4 8{ 16 32 64
Assembly time (sec) 19.38 | 10.00 5.08 249 126 070 0.27
Factor time (sec) 131.229 | 58.976 | 26.174 | 10.273 : 3.260 , 909 36
Wallclock time (sec) | 131.846 | 61.744 | 27.897 | 11.751 | 3.517 { 1.967 | 1.534
Speedup factor 1.00 214| 4.73| 11.22 13454 167.03 | 85.95

Table 2: Statistics for 3-D Hard wall duct (N=1.,004.400. A" complex)

when 64 SUN 10000 processors are used. This super-linear speedup factor is due to
two primary reasons:

(1) The large finite element mode! has been divided into 64 subdomains. Since
each processor is assigned to a smaller subdomain. the number of operations
performed by each processor has been greatly reduced. Note that the number
of operations are proportional to (n(™)3 for the dense marrix. or n{7-BW?
for the banded. sparse matrix. where BW represent the nalf Band Width of
the coefficient stiffness matrix.

(2) When the entire finite element model is analyzed by a direct conventional
sparse solver, more computer “paging” is required due to a larger problem
size.
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5. Conclusions

_ A domain decomposition (DD) formulation for solving sparse linear systems of
equations has been presented. The formulation incorporates lower level novel algo-
rithmic ideas such as mixed direct/iterative sparse solvers, equation reordering. loop
unrolling, efficient sparse assembly, and foward /backward solution phases that are op-
timized to take full advantage of sparsity and exploit modern computer architecture.
Medium to large-scale examples considered in this paper show that the developed
MPI parallel DD code is efficient in both sequential and parallel computing environ-
ments. Statistics show that software based on the formulation is significantly more
efficient than that based on one of the best available commercialized, parallel. direct
sparse solver.
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suggested by the reviewers of this paper and the NASA Langley Research Center for pro-
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4. Parallel Finite Element Domain Decomposition [Refs. 6.6, 6.8]
for Structural/Acoustic Analysis: Un_symmetrical Case

The finite elelement DD formulation for the "unsymmetrical" matrix
case 1s essentially the same as the "symmetrical” case, discussed

in Section 3 of this report. Following are the major differences
between these 2 cases:

(a) Re-ordering algorithms (to minimize fill-in terms), sparse
assembly strategies, and sparse solvers used in the “symmetrical”
case need to be modified for the "unsymmetrical” case.

(b) The Pre_conditioned Conjugate Gradient (PCG) iterative solver
for solving the boundary displacement vector (for "symmetrical”
case) needs to be replaced by the Pre_conditioned Bi-Conjugate
Gradient (with stabilized schemes) [Ref. 6.7] for "unsymmetrical”
case.

For "multiple” processors computation. mixed iterative (BiCG

with Stabilized strategies) and direct sparse, unsymmetrical

solvers are used. However, the BiCG unsymmetrical iterative

solver seems to be "NOT robust" enough to solve the unsymmetrical

finite element acoustic problems. Thus, further investigation on

this topic is needed !

However, for a "single processor" (or serial computation) execution,

since only the sparse, unsymmetrical "direct" solver is used, the

obtained finite element accoustic results seem to be robust, and
reliable.

The Makefile, all source codes (including all .f, and all .c files),
input data file ( = fort.501, with explanation ), output data file
(= fort.700 ) etc... can be obtained from the PI's (Prof. Nguyen's)
ODU SUN account, at:

cd ~/cee/dd_unsym_fem_complex_acoustic_willie/

Notice that the main program is stored under file name "cddmain.f".
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5. Summary of Accomplishments and Deliverable Items

Years | and 2 (January 2001 - January 2003)

(a) A first journal paper (on sparse assembly & solver) has been
published [Ref. 6.1]

(b) NASA LaRC Finite Element [Ref. 6.12] acoustic assembly time has
been significantly reduced [refer to Table 1 of Section 2]

(c) Symmetrical sparse re-ordering algorithms/sofware, such as
Multiple Minimum Degree (MMD), Nested Disection (ND) [Ref. 6.4]
have been incorporated into the finite element procedures.

(d) Symmetrical sparse symbolic & numerical "assembly"” software
have been integrated into the finite element procedures.

(e) Symmetrical sparse symbolic & numerical "factorization" software,
including unrolling strategies [Ref. 6.5, Chapter 10] have been
developed and integrated into the finite element procedures.

(f) Symmetrical sparse "forward and backward solution” software,
including unrolling strategies [Ref. 6.5, Chapter 10] have been
developed and integrated into the finite element procedures.

(g) A second journal paper (on Parallel FE, DD formulation) has been
published [Ref. 6.2]

(h) Parallel DD Pre_conditioned Conjugate Gradient (PCG) iterative

solver (for symmetrical matrix case) software has been developed.
REMARKS:

METiS [Ref. 6.3] (a software which has the capabilities to
minimize fill-in terms during the sparse factorization phase,
and to automatically split a large finite element model into
smaller sub-domains) has NOT yet been incorporated into the
developed DD FE code. Instead, "hard coded" domain splitting
has been used.

Years 3 and 4 (January 2003 - January 2005)
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(i) Un_symmetrical sparse symbolic & numerical "assembly" software
have been integrated into the finite element procedures.

() Un_symmetrical sparse symbolic & numerical "factorization" software,
including unrolling strategies [Ref. 6.5, Chapter 10] have been
developed and integrated into the finite element procedures.

(k) Un_symmetrical sparse "forward and backward solution" software,
inciuding unrolling strategies have been
developed and integrated into the finite element procedures.

(1) METiS [Ref. 6.3] (a software which has the capabilities to
tninirize fili-in terms during the sparse factorization phase,
and to automatically split a large finite element model into
smaller sub-domains) has recently been incorporated into the
developed DD FE code.

(m) Parallel DD [Ref. 6.6] Pre_conditioned Bi_CG iterative solver
[Ref. 6.7] (for un_symmetrical matrix case) software has been
developed.

However, the Bi_CG iterative solver (with DD formulation)
and its communication strategies (amongst different processors)
need further studies to improve the robustness of the
algorithms !

REMARKS:

"Extra" works to investigate the possibilities of using

the software MA28 [see Ref. 6.10], seperating the factorized
and forward/backward phases in the sparse solver package
SUPER-LU [see Ref. 6.9] etc... have also been conducted

by Dr. Nguyen's (PI's) research team at Old Dominon University
(ODU) during the grant periods.
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